MAT1010: Calculus for Economic Analysis I

Lecture 2: Limits, Convergence, and Continuity

WONTAE HAN

The Chinese University of Hong Kong, Shenzhen
Fall 2020

Motivation

Motivation: Why do economists need math?

What motivates econ students to be equipped with tools from

- mathematics,
- statistics,
- programming,
- econometrics?

Motivation: Economic Agent

What is a PERSON in structural economic analysis?

- apersonis a Constrained, Intertemporal, Stochastic, Optimization Problem.
- People with purposes, beliefs, constraints.
- A government with power to tax, spend, redistribute, borrow.
- Economic agents have technologies for producing goods, services, and capital.
- Their behaviors are perturbed by stochastic processes describing information flows and economic shocks.
- An equil'lbrium describes how diverse purposes and possibilities are reconciled through markets and government regulations.

Motivation: Economic Agent

What is a PERSON in structural economic analysis?

- a personis a Constrained, Intertemporal, Stochastic, Optimization Problem.
- People with purposes, beliefs, constraints.
- A government with power to tax, spend, redistribute, borrow.
- Economic agents have technologies for producing goods, services, and capital.
- Their behaviors are perturbed by stochastic processes describing information flows and economic shocks.
- An equilibrium describes how diverse purposes and possibilities are reconciled through markets and government regulations.

Motivation: Purpose of Structural Economic Analysis

- Interpret HISTORICAL DATA in ways that distinguish CAUSE from COINCIDENCE so that we can ...
- Evaluate Consequences of Alternative Government Policies.

Motivation: Female Labor Force Participation

Long-run perspective on female labor force participation rates
Proportion of the female population ages 15 and over that is economically active. Data is available for OECD member countries,

Our World
in Data as well as for non-member countries publishing statistics in OECD.stats.

10%

Source: Our World In Data based on OECD (2017) and Long (1958)
Note: For some observations prior 1960, the participation rate is taken with respect to the female population 14 and over. See sources for details.

Motivation: Female Labor Force Participation

Consider a 27 year old housewife who has not participated in the job market.

$$
\begin{array}{ll}
\text { Max } & \text { UTIL }_{27}+(0.96) \times \text { UTIL }_{28}+(0.96)^{2} \times \text { UTIL }_{29}+\cdots+(0.96)^{43} \times \text { UTIL }_{70} \\
\text { s.t. } & \text { UTIL }_{27}=\text { CONSUMPTION }_{27}+10000\left(1-\text { JOIN }_{27}\right) \\
& \text { CONSUMPTION }_{27}=\text { HUSBAND INCOME }_{27}+\text { WAGE }_{27} \times \mathrm{JOIN}_{27} \\
\log \left(\text { WAGE }_{27}\right)=\$ 200+\$ 500 \times \text { Education }+\$ 1000 \times K_{26}-\$ 25\left(K_{26}\right)^{2}+\xi_{27} \\
K_{27}=K_{26}+\mathrm{JOIN}_{27} \quad \text { with } K_{26}=0 \\
\operatorname{JOIN}_{27}=\left\{\begin{array}{lll}
1 & \text { if } & \text { she joins in the labor market and works in a job. } \\
0 & \text { if } & \text { she does not work. }
\end{array}\right.
\end{array}
$$

Motivation: Equity vs. Debt in Corporate Finance

Figure 1. Financial Flows in the Nonfinancial Business Sector (Corporate and Noncorporate), 1952:I-2010:II

	Standard deviation(Variable)	Corr(Variable, GDP)
EquPay/GDP	1.13	0.45
DebtRep/GDP	1.46	-0.70

Motivation: Equity vs. Debt in Corporate Finance

What is a firm?

Max $D I V_{2020}+(0.96) D I V_{2021}+(0.96)^{2} D I V_{2022}+(0.96)^{3} D I V_{2023}+\cdots$
s.t. $\quad D I V_{2020}+I_{2020}+(1.04)$ BOND $_{2019}=\left\{\begin{array}{l}\text { PRICE }_{2020} \times \underbrace{2020}_{\text {QUANTITY }} \\ \left(K_{2020}\right)^{\frac{1}{3}}\left(N_{2020}\right)^{\frac{2}{3}} \\ - \\ + \text { WAGE }_{2020} \times N_{2020} \\ \text { BOND }_{2020}\end{array}\right.$

$$
K_{2021}=0.90 \times K_{2020}+I_{2020}
$$

$B O N D_{2020}<\$ 5,000,000$ which is susceptible to economic circumstances.

Motivation: Incomes around the world, 2015

- The U.S., Japan, E.U. countries, China, etc have grown quickly, while some nations have stalled.
- A quarter of the world's population lives in countries where the standard of living is lower than it was in the United States in 1900.

FIGURE 9-2 Krugman/Wells, Macroeconomics, 5e, © 2018 Worth Publishers
Data from: World Development Indicators, World Bank.

Motivation: Comparing economies across time and space

- China and India was at the similar level of real GDP per capita from 1950-1980.
- What drives China's faster economic growth since 1980 ?

FIGURE 9-1 Krugman/Wells, Macroeconomics, 5e, © 2018 Worth Publishers
Data from: Angus Maddison, Statistics on World Population, GDP, and Per Capita GDP, 1-2008AD, http://www.ggdc.net/maddison; The Conference Board Total Economy Database ${ }^{\text {m }}$, May 2016, http://www.conference-board.org/data/economydatabase/.

Motivation: Measure an Economy

Closed Economy
 $C+I+G=Y$

Open Economy $\quad C+I+G+E X-I M=Y$

The Growth Rate of Real GDP(\%)

Motivation: The Solow Model: 4 equations and 4 unknowns

- Say, the year is 2000 now. Consider a closed economy and there is no government sector. Workers rent their labor to firms. Their labor is fixed at $L=\bar{L}$.

$$
Y_{2000}=C_{2000}+I_{2000}
$$

- [The accumulation of capital] Entrepreneurs make investments and produce capital goods through the linear technology:

$$
K_{2001}=K_{2000}-\bar{d} K_{2000}+I_{2000} \quad \text { with } \quad \bar{d}=0.10=10 \%
$$

- \bar{d} denotes the depreciation rate of capital, which is the ratio of the amount of capital that wears out per year to capital stock.
- Change in capital stock and investment can be rewritten as:

$$
\begin{aligned}
\Delta K_{2001} & \equiv K_{2001}-K_{2000} \\
& =I_{2000}-\bar{d} K_{2000} \\
I_{2000} & =\bar{s} Y_{2000}
\end{aligned}
$$

where \bar{s} is an exogenous savings rate, say $\bar{s}=0.30=30 \%$.

- [Production function] Firms hire capital and labor to produce consumption goods in the perfectly competitive market.

$$
Y=F(K, L)=A \cdot K^{\frac{1}{3}} L^{\frac{2}{3}} \quad \text { i.e. } \quad \frac{Y}{L}=A\left(\frac{K}{L}\right)^{\alpha} \quad \text { where } \quad \alpha=\frac{1}{3}
$$

That is, we solve for $Y_{2000}, C_{2000}, I_{2000}, K_{2001}$ with $L_{2000}=\bar{L}$ and K_{2000} given.

Motivation: The Solow Model

- There is no modern problem in social science to be solvable by paper and pencil.
- Learn how to use Excel.
- Using advanced programming skills is highly appreciated: Matlab, Python, Stata, C/C++, Fortran, etc.

The Solow Diagram with Output

An Increase in the Investment Rate

Limits of Sequences

[SHS] Chap 7.11 [HWT] Chap 9.1 \& 9.2

Sequence

- A sequence is an enumerated collection of objects.
- Unlike a set, the same elements can appear multiple times at different positions in a sequence since order matters.

$$
\begin{array}{ll}
\left\{a_{n}\right\}_{n=1}^{4}=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\} & =\{A, N, N, E\} \\
\left\{b_{i}\right\}_{i=1}^{4}=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}=\{A, R, M, Y\} \\
\left\{c_{j}\right\}_{j=1}^{4}=\{j\}_{j=1}^{4}=\{1,2,3,4\} \\
\left\{d_{n}\right\}_{n=1}^{5}=\{2 n+1\}_{n=1}^{5}= \\
\left\{e_{n}\right\}_{n=1}^{6}=\left\{n^{2}\right\}_{n=1}^{6}= \\
\left\{f_{n}\right\}_{n=1}^{\infty}=\left\{\log _{e}(n)\right\}_{n=1}^{\infty}=
\end{array}
$$

Sequence

- A sequence is an enumerated collection of objects.
- Unlike a set, the same elements can appear multiple times at different positions in a sequence since order matters.

$$
\begin{array}{ll}
\left\{a_{n}\right\}_{n=1}^{4}=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\} & =\{A, N, N, E\} \\
\left\{b_{i}\right\}_{i=1}^{4}=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\} & =\{A, R, M, Y\} \\
\left\{c_{j}\right\}_{j=1}^{4}=\{j\}_{j=1}^{4}=\{1,2,3,4\} \\
\left\{d_{n}\right\}_{n=1}^{5}=\{2 n+1\}_{n=1}^{5}=\{3,5,7,9,11\} \\
\left\{e_{n}\right\}_{n=1}^{6}=\left\{n^{2}\right\}_{n=1}^{6}= \\
\left\{f_{n}\right\}_{n=1}^{\infty}=\left\{\log _{e}(n)\right\}_{n=1}^{\infty}=
\end{array}
$$

Sequence

- A sequence is an enumerated collection of objects.
- Unlike a set, the same elements can appear multiple times at different positions in a sequence since order matters.

$$
\begin{array}{ll}
\left\{a_{n}\right\}_{n=1}^{4}=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\} & =\{A, N, N, E\} \\
\left\{b_{i}\right\}_{i=1}^{4}=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}=\{A, R, M, Y\} \\
\left\{c_{j}\right\}_{j=1}^{4}=\{j\}_{j=1}^{4}=\{1,2,3,4\} \\
\left\{d_{n}\right\}_{n=1}^{5}=\{2 n+1\}_{n=1}^{5}=\{3,5,7,9,11\} \\
\left\{e_{n}\right\}_{n=1}^{6}=\left\{n^{2}\right\}_{n=1}^{6}=\{1,4,9,16,25,36\} \\
\left\{f_{n}\right\}_{n=1}^{\infty}=\left\{\log _{e}(n)\right\}_{n=1}^{\infty}=
\end{array}
$$

Sequence

- A sequence is an enumerated collection of objects.
- Unlike a set, the same elements can appear multiple times at different positions in a sequence since order matters.

$$
\begin{array}{ll}
\left\{a_{n}\right\}_{n=1}^{4}=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\} & =\{A, N, N, E\} \\
\left\{b_{i}\right\}_{i=1}^{4}=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}=\{A, R, M, Y\} \\
\left\{c_{j}\right\}_{j=1}^{4}=\{j\}_{j=1}^{4}=\{1,2,3,4\} \\
\left\{d_{n}\right\}_{n=1}^{5}=\{2 n+1\}_{n=1}^{5}=\{3,5,7,9,11\} \\
\left\{e_{n}\right\}_{n=1}^{6}=\left\{n^{2}\right\}_{n=1}^{6}=\{1,4,9,16,25,36\} \\
\left\{f_{n}\right\}_{n=1}^{\infty}=\left\{\log _{e}(n)\right\}_{n=1}^{\infty}=\{\ln (1), \ln (2), \ln (3), \ln (4), \ln (5), \cdots\}
\end{array}
$$

Sequence

- To study single-variable calculus, our focus is on a sequence of real numbers, $x_{n} \in \mathbb{R}$.
- In general, a sequence, x_{n}, is defined as a function which maps $z \in \mathbb{Z}$ to $c \in \mathbb{C}$, where z denotes a integer number and $c=a+b i \forall a, b \in \mathbb{R}$ denotes a complex number (in time series econometrics, for example).
- A sequence, x_{n}, is defined to be a function which maps $n \in \mathbb{N}$ to $r \in \mathbb{R}$, where n denotes a natural number and r denotes a real number (in this course).
- Find the first ten elements of the following sequences.

$$
\begin{array}{llll}
x_{n} & =a+b n & \text { with } \mathrm{a}=3 \text { and } \mathrm{b}=2 & \text { Arithmetic Progression } \\
x_{n} & =a b^{n} & \text { with } \mathrm{a}=1 \text { and } \mathrm{b}=2 & \text { Geometric Progression } \\
x_{n+2}=x_{n}+x_{n+1} & \text { with } x_{1}=1 \text { and } x_{2}=1 & \text { Fibonacci Sequence }
\end{array}
$$

Limit of a Sequence

$$
\lim _{n \rightarrow \infty} x_{n}=c \quad \text { i.e. } \quad x_{n} \rightarrow c
$$

- As $n \in \mathbb{N}$ diverges to the infinity, the sequence x_{n} gets close to $c \in \mathbb{R}$ by any measure of closeness.
- c, the limit of a sequence x_{n}, is the value that the terms of the sequence x_{n} tend to.
- If such $c \in \mathbb{R}$ exists (i.e. well defined), the sequence x_{n} is called convergent.
- If such $c \in \mathbb{R}$ does not exist, the sequence x_{n} is said to be divergent.
- Find the limit, $\lim _{n \rightarrow \infty} x_{n}$:

$$
\begin{array}{llll}
x_{n}=c & x_{n}=\frac{1}{n} & x_{n}=10 n & x_{n}=\frac{3 n+2}{n^{10}} \\
x_{n}=\frac{n^{10}}{10^{n}} & x_{n}=\log _{e}(n) & x_{n}=\left(1+\frac{1}{n}\right)^{n} & x_{n}=(-1)^{n} \\
x_{n}=(-1)^{n} 2^{n} & x_{n}=\frac{(-1)^{n} 2^{n}}{5^{n}} & &
\end{array}
$$

Limit of a Sequence

$$
\lim _{n \rightarrow \infty} x_{n}=c \Longleftrightarrow \forall \epsilon \in \mathbb{R}^{+}\left(\exists N \in \mathbb{N}\left(\forall n \in \mathbb{N}\left(n \geq N \Longrightarrow\left|x_{n}-c\right|<\epsilon\right)\right)\right)
$$

- For every measure of closeness ϵ, the sequence's terms are eventually placed in an area where the distance between x_{n} and c is less than ϵ (i.e. ϵ-neighborhood).
- $\forall \epsilon>0$, there exists a natural number N s.t. for every $n>N$, we have $\left|x_{n}-c\right|<\epsilon$.
- Find such N_{1} for $\epsilon=1, N_{2}$ for $\epsilon=0.01$, and N_{3} for $\epsilon=0.0001$:

$$
\begin{array}{llll}
x_{n}=c=0.1 & x_{n}=\frac{1}{n} & x_{n}=10 n & x_{n}=\frac{3 n+2}{n^{10}} \\
x_{n}=\frac{n^{10}}{10^{n}} & x_{n}=\log _{e}(n) & x_{n}=\left(1+\frac{1}{n}\right)^{n} & x_{n}=(-1)^{n} \\
x_{n}=(-1)^{n} 2^{n} & x_{n}=\frac{(-1)^{n} 2^{n}}{5^{n}} & &
\end{array}
$$

Limit of a Sequence

$$
\lim _{n \rightarrow \infty} x_{n}=c \Longleftrightarrow \forall \epsilon \in \mathbb{R}^{+}\left(\exists N \in \mathbb{N}\left(\forall n \in \mathbb{N}\left(n \geq N \Longrightarrow\left|x_{n}-c\right|<\epsilon\right)\right)\right)
$$

- For every measure of closeness ϵ, the sequence's terms are eventually placed in an area where the distance between x_{n} and c is less than ϵ (i.e. ϵ-neighborhood).
- $\forall \epsilon>0$, there exists a natural number N s.t. for every $n>N$, we have $\left|x_{n}-c\right|<\epsilon$.
- Prove

$$
\lim _{n \rightarrow \infty} \frac{1}{2^{n}}=0, \quad \lim _{n \rightarrow \infty} \frac{1}{n}=0, \quad \neg\left(\lim _{n \rightarrow \infty}(-1)^{n}=1\right), \quad \lim _{n \rightarrow \infty} \sqrt[n]{n}=1, \quad \lim _{n \rightarrow \infty} \frac{\ln (n)}{n}=0
$$

- Hint for (3):
- Hint for (4): $h_{n} \equiv \sqrt[n]{n}-1 \geq 0$ for all $n \in \mathbb{N}$. Then we have

Limit of a Sequence

$$
\lim _{n \rightarrow \infty} x_{n}=c \Longleftrightarrow \forall \epsilon \in \mathbb{R}^{+}\left(\exists N \in \mathbb{N}\left(\forall n \in \mathbb{N}\left(n \geq N \Longrightarrow\left|x_{n}-c\right|<\epsilon\right)\right)\right)
$$

- For every measure of closeness ϵ, the sequence's terms are eventually placed in an area where the distance between x_{n} and c is less than ϵ (i.e. ϵ-neighborhood).
- $\forall \epsilon>0$, there exists a natural number N s.t. for every $n>N$, we have $\left|x_{n}-c\right|<\epsilon$.
- Prove

$$
\lim _{n \rightarrow \infty} \frac{1}{2^{n}}=0, \quad \lim _{n \rightarrow \infty} \frac{1}{n}=0, \quad \neg\left(\lim _{n \rightarrow \infty}(-1)^{n}=1\right), \quad \lim _{n \rightarrow \infty} \sqrt[n]{n}=1, \quad \lim _{n \rightarrow \infty} \frac{\ln (n)}{n}=0
$$

- Hint for (3):

$$
\begin{aligned}
& \neg\left(\forall \epsilon \in \mathbb{R}^{+}\left(\exists N \in \mathbb{N}\left(\forall n \in \mathbb{N}\left(n \geq N \Longrightarrow\left|x_{n}-c\right|<\epsilon\right)\right)\right)\right) \\
\Rightarrow & \exists \epsilon \in \mathbb{R}^{+}\left(\forall N \in \mathbb{N}\left(\exists n \in \mathbb{N}\left(n \geq N \Longrightarrow\left|x_{n}-c\right| \geq \epsilon\right)\right)\right)
\end{aligned}
$$

- Hint for (4): $h_{n} \equiv \sqrt[n]{n}-1 \geq 0$ for all $n \in \mathbb{N}$. Then we have

$$
\begin{aligned}
n & =\left(1+h_{n}\right)^{n}={ }_{n} C_{0}+{ }_{n} C_{1} h_{n}+{ }_{n} C_{2} h_{n}^{2}+{ }_{n} C_{3} h_{n}^{3}+\cdots+{ }_{n} C_{n-1} h_{n}^{n-1}+{ }_{n} C_{n} h_{n}^{n} \\
& \geq{ }_{n} C_{2} h_{n}^{2}=\frac{n!}{2!(n-2)!} h_{n}^{2} \text { for all } n \in \mathbb{N} \text { where } 0!=1
\end{aligned}
$$

Limit of a Sequence

Theorem

A sequence x_{n} is bounded if $\exists M \in \mathbb{R}$ such that $\left|x_{n}\right| \leq M \quad \forall n \in \mathbb{N}$.

If a sequence x_{n} is convergent, then x_{n} is bounded.

\rightarrow The converse does not hold. Observe $x_{n}=(-1)^{n}$

Limit of a Sequence

Theorem

A sequence x_{n} is bounded if $\exists M \in \mathbb{R}$ such that $\left|x_{n}\right| \leq M \quad \forall n \in \mathbb{N}$.

If a sequence x_{n} is convergent, then x_{n} is bounded.

Proof.

For any $\epsilon \in \mathbb{R}^{+}, \exists N$ s.t. $n>N \Rightarrow\left|x_{n}-c\right|<\epsilon$ by assumption. Suppose we find such N^{*} for $\epsilon=1$. For $n>N^{*},\left|x_{n}\right|-|c| \leq\left|x_{n}-c\right|<1$ because for all $a, b \in \mathbb{R}$, $|a+b| \leq|a|+|b|$. Thus, $\left|x_{n}\right|<1+|c|$ for all $n>N^{*}$. Set M to:

$$
M=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|,\left|x_{3}\right|, \cdots,\left|x_{N^{*}-2}\right|,\left|x_{N^{*}-1}\right|,\left|x_{N^{*}}\right|, 1+|c|\right\}
$$

Then $\left|x_{n}\right| \leq M$ for all $n \in \mathbb{N}$.

- The converse does not hold. Observe $x_{n}=(-1)^{n}$.

Limit of a Sequence

Lemma

If $\lim _{n \rightarrow \infty} x_{n}=c$, then $\forall a>c, \exists N \in \mathbb{N}$ such that $n>N \Longrightarrow x_{n}<a$
If $\lim _{n \rightarrow \infty} x_{n}=c$, then $\forall b<c, \exists N \in \mathbb{N}$ such that $n>N \Longrightarrow x_{n}>b$

Theorem

The limit of a convergent sequence is unique.
That is, if $\lim _{n \rightarrow \infty} x_{n}=c$ and $\lim _{n \rightarrow \infty} x_{n}=d$, then $c=d$.

- Prove all above!
- (Hint for the proof of the theorem) Suppose $\lim _{n \rightarrow \infty} x_{n}=c$ and $\lim _{n \rightarrow \infty} x_{n}=d$ with $c<d$. Let $a \equiv \frac{c+d}{2}$. Show $\exists N$ such that $\forall n>N \Longrightarrow x_{n}<a$ and $x_{n}>a$, which is a contradiction.

Limit of a Sequence

Limit Theorem

Suppose $\lim _{n \rightarrow \infty} x_{n}=x$ and $\lim _{n \rightarrow \infty} y_{n}=y$ with $\alpha \in \mathbb{R}$.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(x_{n} \pm y_{n}\right)=x \pm y \\
& \lim _{n \rightarrow \infty}\left(\alpha x_{n}\right)=\alpha x \\
& \lim _{n \rightarrow \infty}\left(x_{n} y_{n}\right)=x y \\
& \lim _{n \rightarrow \infty}\left(\frac{x_{n}}{y_{n}}\right)=\frac{x}{y} \text { for } y_{n}, y \neq 0
\end{aligned}
$$

- Find $\lim _{n \rightarrow \infty} \frac{n-1}{n}$ and $\lim _{n \rightarrow \infty} \frac{2 n^{2}+1}{n(n-1)+3}$.
- Let $x_{n}=(-1)^{n}$ and $y_{n}=(-1)^{n+1}$. Compare $\lim _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)$ with $\lim _{n \rightarrow \infty} x_{n}$ and $\lim _{n \rightarrow \infty} y_{n}$.

Limit of a Sequence

Theorem

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} x_{n}=x, \lim _{n \rightarrow \infty} y_{n}=y, \text { and } x_{n} \geq y_{n} \text { for } \forall n \in \mathbb{N} \text { implies } x \geq y \\
& a \leq x_{n} \leq b \text { for } \forall n \in \mathbb{N} \text { and } \lim _{n \rightarrow \infty} x_{n}=x \text { implies } a \leq x \leq b
\end{aligned}
$$

Sandwich Lemma

$$
\begin{aligned}
& \text { Let } x_{n} \leq y_{n} \leq z_{n} \text { for all } n \in \mathbb{N} . \\
& \lim _{n \rightarrow \infty} x_{n}=c \text { and } \lim _{n \rightarrow \infty} z_{n}=c \text { implies } \lim _{n \rightarrow \infty} y_{n}=c .
\end{aligned}
$$

- Prove the theorem by contradiction: suppose $x<y$ and suppose $x<a$ or $x>b$.
- The limit does not preserve strict inequality. See limits of $x_{n}=\frac{1}{n}$ and $y_{n}=\frac{1}{2 n}$.
- Use the Sandwich Lemma to prove

$$
\lim _{n \rightarrow \infty} \frac{\sqrt{n^{2}+1}}{n!}=0, \lim _{n \rightarrow \infty} \frac{1}{2^{n}}=0\left(\text { show } \frac{1}{2^{n}}<\frac{1}{n}\right), \quad \lim _{n \rightarrow \infty} \frac{e^{n}}{n!}=0, \lim _{n \rightarrow \infty} \frac{n!}{n^{n}}=0, \quad \lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{\sqrt{n^{2}+k}}=1
$$

Limit of a Sequence

Sandwich Lemma

$$
\begin{aligned}
& \text { Let } x_{n} \leq y_{n} \leq z_{n} \text { for all } n \in \mathbb{N} . \\
& \lim _{n \rightarrow \infty} x_{n}=c \text { and } \lim _{n \rightarrow \infty} z_{n}=c \text { implies } \lim _{n \rightarrow \infty} y_{n}=c .
\end{aligned}
$$

For any positive real number $\epsilon \in \mathbb{R}^{+}$, we can always pick up some $\bar{\xi}, \delta \in \mathbb{Q}$ such that $0<\xi, \delta<\epsilon$ since the rationals, \mathbb{Q}, are a densely ordered subset of the real numbers, \mathbb{R}. Then $\exists N_{x} \in \mathbb{N}$ and $\exists N_{z} \in \mathbb{N}$ such that

Let's define $N \equiv \max \left(N_{x}, N_{z}\right)$. Therefore, for $\forall n \geq N=\max \left(N_{x}, N_{z}\right)$,

Limit of a Sequence

Sandwich Lemma

$$
\begin{aligned}
& \text { Let } x_{n} \leq y_{n} \leq z_{n} \text { for all } n \in \mathbb{N} . \\
& \lim _{n \rightarrow \infty} x_{n}=c \text { and } \lim _{n \rightarrow \infty} z_{n}=c \text { implies } \lim _{n \rightarrow \infty} y_{n}=c .
\end{aligned}
$$

Proof.

For any positive real number $\epsilon \in \mathbb{R}^{+}$, we can always pick up some $\xi, \delta \in \mathbb{Q}$ such that $0<\xi, \delta<\epsilon$ since the rationals, \mathbb{Q}, are a densely ordered subset of the real numbers, \mathbb{R}. Then $\exists N_{x} \in \mathbb{N}$ and $\exists N_{z} \in \mathbb{N}$ such that

$$
n \geq N_{x} \Longrightarrow\left|x_{n}-c\right|<\xi \text { and } n \geq N_{z} \Longrightarrow\left|z_{n}-c\right|<\delta
$$

Let's define $N \equiv \max \left(N_{x}, N_{z}\right)$. Therefore, for $\forall n \geq N=\max \left(N_{x}, N_{z}\right)$,

$$
\begin{array}{ll}
& c-\epsilon<c-\xi<x_{n}<c+\xi<c+\epsilon \\
& c-\epsilon<c-\delta<z_{n}<c+\delta<c+\epsilon \\
\therefore & c-\epsilon<x_{n} \leq y_{n} \leq z_{n}<c+\epsilon \Longrightarrow\left|y_{n}-c\right|<\epsilon .
\end{array}
$$

Limit of a Sequence

Definition: Monotone Sequence

x_{n} is increasing
x_{n} is strictly increasing
x_{n} is decreasing
x_{n} is strictly decreasing if $x_{1}>x_{2}>x_{3}>\cdots$.
x_{n} is (strictly) monotone if it is either (strictly) increasing or (strictly) decreasing.

Definition: Boundedness

A sequence x_{n} is bounded

$$
\text { if } \exists M \in \mathbb{R} \quad \text { such that }\left|x_{n}\right| \leq M \quad \forall n \in \mathbb{N} .
$$

A sequence x_{n} is bounded above if $\exists M \in \mathbb{R}$ such that $x_{n} \leq M \quad \forall n \in \mathbb{N}$.
A sequence x_{n} is bounded below if $\exists M \in \mathbb{R}$ such that $x_{n} \geq M \quad \forall n \in \mathbb{N}$.

Limit of a Sequence

Properties

If x_{n} is bounded above (below), then $-x_{n}$ is bounded below (above).
If x_{n} is increasing (decreasing), then $-x_{n}$ is decreasing (increasing).
If x_{n} is increasing (decreasing), then x_{n} is bounded below (above) (by x_{1}).
If M is an upper bound of x_{n}, \quad then for any $M^{\prime} \geq M, M^{\prime}$ is also an upper bound.
If M is an lower bound of x_{n}, then for any $M^{\prime} \leq M, M^{\prime}$ is also an lower bound.

- Determine monotonicity, and find upper and lower bounds:

$$
x_{n}=\frac{1}{n}, \quad x_{n}=n(-1)^{n}, \quad x_{n}=\frac{8^{n}}{n!}, \quad x_{n}=\frac{n!}{n^{n}}
$$

Limit of a Sequence

Definition

$\lim _{n \rightarrow \infty} x_{n}=\infty \quad \Longleftrightarrow$ For any real number $\mathrm{M}>0, \exists N$ s.t. $\forall n>N \Longrightarrow x_{n}>M$ $\lim _{n \rightarrow \infty} x_{n}=-\infty \Longleftrightarrow$ For any real number $\mathrm{M}<0, \exists N$ s.t. $\forall n>N \Longrightarrow x_{n}<M$

If $\lim _{n \rightarrow \infty} x_{n}= \pm \infty$, then x_{n} is said to be unbounded.

- Determine the convergence of the harmonic sequence. Find $\lim _{n \rightarrow \infty} x_{n}$.

$$
x_{n}=\sum_{k=1}^{n} \frac{1}{k}=1+\frac{1}{2}+\cdots+\frac{1}{n}
$$

- If x_{n} is increasing (decreasing) and unbounded, then $x_{n} \rightarrow \infty(-\infty)$.

Limit of a Sequence

[MCT] Monotone Convergence Theorem for Sequences

Every increasing sequence bounded above always converges.
Every decreasing sequence bounded below always converges.
Therefore, every bounded monotone sequence always converges.

- By MCT, if a sequence is monotone and bounded, then it converges.
- Suppose $x_{n+1}=\sqrt{2+x_{n}}$ with $x_{1}=0, x_{2}=\sqrt{2}$. Prove x_{n} converges by using MCT. Find its limit.
- Determine the convergence of $x_{n}=\left(1+\frac{1}{n}\right)^{n}$ by using MCT. Note that $x_{n} \geq 0$ and use $n!\geq 2^{n-1}$ and

$$
x_{n}={ }_{n} C_{0}+{ }_{n} C_{1} \frac{1}{n}+{ }_{n} C_{2} \frac{1}{n^{2}}+{ }_{n} C_{3} \frac{1}{n^{3}}+\cdots+{ }_{n} C_{n-1} \frac{1}{n^{n-1}}+{ }_{n} C_{n} \frac{1}{n^{n}} .
$$

- Note that $\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}$.

Limit of a Sequence

[MCT] Monotone Convergence Theorem for Sequences

Every increasing sequence bounded above always converges.
Every decreasing sequence bounded below always converges.

- Every increasing sequence bounded above converges to its least upper bound (supremum)
- Fvery decreasing sequence bounded below converges to its greatest lower bound (infimum)

The Continuous Function Theorem for Sequences

Let $\left\{x_{n}\right\}$ be a sequence of real numbers. If $x_{n} \rightarrow c$ and if f is a function which is continuous at c and defined at all x_{n}, then $f\left(x_{n}\right) \rightarrow f(c)$.

Limit of a Sequence

[MCT] Monotone Convergence Theorem for Sequences

Every increasing sequence bounded above always converges.
Every decreasing sequence bounded below always converges.

Proof.

Suppose x_{n} is increasing and bounded above. Then there exists an M such that $x_{n} \leq M$ for all n. Let S be the least upper bound such that for any $\epsilon>0, S-\epsilon$ is not an upper bound of x_{n}. Thus, there exists an N such that $x_{N}>S-\epsilon$. Therefore, for all $n>N$, we have $S-\epsilon<x_{N} \leq x_{n} \leq S$. Therefore, $\left|x_{n}-S\right|<\epsilon$ for all $n>N$, that is, $\lim _{n \rightarrow \infty} x_{n}=S$. The MCT for decreasing sequences can be proven analogously.

- Every increasing sequence bounded above converges to its least upper bound (supremum).
- Every decreasing sequence bounded below converges to its greatest lower bound (infimum).

The Continuous Function Theorem for Sequences

Let $\left\{x_{n}\right\}$ be a sequence of real numbers. If $x_{n} \rightarrow c$ and if f is a function which is continuous at c and defined at all x_{n}, then $f\left(x_{n}\right) \rightarrow f(c)$.

Limit of a Sequence

How do we prove any sequence is convergent when we don't know its limit?

Definition: Cauchy Sequence

x_{n} is a cauchy sequence if $\exists N \in \mathbb{N}$ s.t. $\left|x_{n}-x_{m}\right|<\epsilon$ for $\forall n, m>N$ with $\forall \epsilon \in \mathbb{R}^{+}$.

Theorem

(a) Every converging sequence is a cauchy sequence.
(b) Every cauchy sequence is convergent.

The proof of (b) requires many steps: (1) a cauchy seq. is bounded; (2) a bounded seq. has a converging subseq.; (3) when a subseq. of a cauchy seq. converges, then the cauchy seq. converges. Let's skip.

- Show $x_{n}=\sum_{k=1}^{n} \frac{1}{k}$ is not a cauchy sequence.

Limit of a Sequence

How do we prove any sequence is convergent when we don't know its limit?

Definition: Cauchy Sequence

x_{n} is a cauchy sequence if $\exists N \in \mathbb{N}$ s.t. $\left|x_{n}-x_{m}\right|<\epsilon$ for $\forall n, m>N$ with $\forall \epsilon \in \mathbb{R}^{+}$.

Theorem

(a) Every converging sequence is a cauchy sequence.
(b) Every cauchy sequence is convergent.

Proof.

(a) Suppose $x_{n} \rightarrow x$ as $n \rightarrow \infty$. For any $\frac{\epsilon}{2}>0$ given, there exists an $N \in \mathbb{N}$ such that $\left|x_{n}-x\right|<\frac{\epsilon}{2}$ for $n>N$ and $\left|x_{m}-x\right|<\frac{\epsilon}{2}$ for $m>N$. Then, we have

$$
\left|x_{n}-x_{m}\right|=\left|x_{n}-x+x-x_{m}\right| \leq\left|x_{n}-x\right|+\left|x-x_{m}\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

The proof of (b) requires many steps: (1) a cauchy seq. is bounded; (2) a bounded seq. has a converging subseq.; (3) when a subseq. of a cauchy seq. converges, then the cauchy seq. converges. Let's skip.

- Show $x_{n}=\sum_{k=1}^{n} \frac{1}{k}$ is not a cauchy sequence.

Limit of a Sequence: Exercises

- Write out the first ten terms of the sequence:

$$
a_{1}=1, a_{n+1}=a_{n}+\left(1 / 2^{n}\right) \quad a_{1}=2, a_{n+1}=(-1)^{n+1} a_{n} / 2 \quad a_{1}=2, a_{2}=-1, a_{n+2}=a_{n+1} / a_{n}
$$

- Find the limit:

$$
\begin{array}{lll}
a_{n}=\frac{1-2 n}{1+2 n}, & a_{n}=\frac{1-5 n^{4}}{n^{4}+8 n^{3}}, & a_{n}=\frac{n^{2}-2 n+1}{n-1}, \\
a_{n}=\left(\frac{n+1}{2 n}\right)\left(1-\frac{1}{n}\right), & a_{n}=\left(2-\frac{1}{2^{n}}\right)\left(3+\frac{1}{1.5^{n}}\right), & a_{n}=\ln (n)-\ln (n+1)
\end{array}
$$

- Find the limit:

$$
\lim _{n \rightarrow \infty}\left(\frac{n+1}{n-1}\right)^{n} \quad \lim _{n \rightarrow \infty} x^{\frac{1}{n}} \quad(x>0) \quad \lim _{n \rightarrow \infty} x^{n} \quad(|x|<1)
$$

- Find the limit:
2,
$2+\frac{1}{2}$,
$2+\frac{1}{2+\frac{1}{2}}$,
$2+\frac{1}{2+\frac{1}{2+\frac{1}{2}}}$,
$2+\frac{1}{2+\frac{1}{2+\frac{1}{2+\frac{1}{2}}}}$,
$\sqrt{1}, \quad \sqrt{1+\sqrt{1}}, \quad \sqrt{1+\sqrt{1+\sqrt{1}}}$,
$\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1}}}}$,
...
$1, \quad 1, \quad 1+1, \quad 1+2, \quad 2+3, \quad 3+5, \quad 5+8, \quad 8+13, \quad 13+21, \quad 21+34, \quad 34+55$,

See the appendix A. 6 of the textbook, HWT.

Limits of Functions

[SHS] Chap 6.5 \& $7.9[H W T]$ Chap 2.2 \& 2.3 \& 2.4

Limit of a Function

$$
\lim _{x \rightarrow x_{0}} f(x)=L
$$

- Suppose $f(x)$ is defined on an open interval about x_{0}, except possibly at x_{0} itself.
- If $f(x)$ is arbitrarily close to L for all x sufficiently close to x_{0}, then we say, the function $f(x)$ approaches the limit L as x approaches x_{0}.
- That is, the limit of $f(x)$ as x approaches x_{0} is L.
- [Question] Consider a function $f(x)=x+1$ and a function $g(x)=\frac{x^{2}-1}{x-1}$. Are these two functions the same?

Limit of a Function

$$
\lim _{x \rightarrow x_{0}} f(x)=L
$$

- "The limit of $f(x)$ as x approaches x_{0} is L " is formally stated as follows:
(1) Suppose $f(x): \mathbb{R} \rightarrow \mathbb{R}$ is defined on an open interval (a, b) in \mathbb{R} and $x_{0} \in(a, b)$ is a point of that interval.
(2) The function $f(x)$ converges to L as x approaches x_{0} if
(3) for every real $\epsilon>0$, there exists a real $\delta>0$ such that for every x on the interval $0<\left|x-x_{0}\right|<\delta$ with $x_{0} \in(a, b)$, it satisfies $|f(x)-L|<\epsilon$.
- $\lim _{x \rightarrow x_{0}} f(x)=L$, the limit of a function at x_{0}, is a local property, which is defined on $\left(x_{0}-\delta, x_{0}+\delta\right)$ for some small $\delta \in \mathbb{R}^{+}$.
- Prove $\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0$.

Limit of a Function: Properties

Use analogies to understand what is new by comparing what you understood.

Theorem

If $f(x)$ converges as $x \rightarrow x_{0}$,
there exists a $\delta>0$ such that $f(x)$ is bounded on $\left(x_{0}-\delta, x_{0}+\delta\right)$.

Theorem

A sequence x_{n} is bounded
If a sequence x_{n} is convergent then x_{n} is bounded.

Limit of a Function: Properties

Use analogies to understand what is new by comparing what you understood.

Theorem

If $f(x)$ converges as $x \rightarrow x_{0}$, there exists a $\delta>0$ such that $f(x)$ is bounded on $\left(x_{0}-\delta, x_{0}+\delta\right)$.

Theorem

A sequence x_{n} is bounded if $\exists M \in \mathbb{R}$ such that $\left|x_{n}\right| \leq M \quad \forall n \in \mathbb{N}$.
If a sequence x_{n} is convergent, then x_{n} is bounded.

Limit of a Function: Properties

Use analogies to understand what is new by comparing what you understood.

Properties

If $\lim _{x \rightarrow x_{0}} f(x)=L<a$, then $\exists \delta>0$ such that $\forall x, 0<\left|x-x_{0}\right|<\delta \Longrightarrow f(x)<a$
If $\lim _{x \rightarrow x_{0}} f(x)=L>b$, then $\exists \delta>0$ such that $\forall x, 0<\left|x-x_{0}\right|<\delta \Longrightarrow f(x)>b$

If $\lim _{n \rightarrow \infty} x_{n}=c$, then $\forall a>c, \exists N \in \mathbb{N}$ such that $n>N \Longrightarrow x_{n}<a$
If $\lim _{n \rightarrow \infty} x_{n}=c$, then $\forall b<c, \exists N \in \mathbb{N}$ such that $n>N \Longrightarrow x_{n}>b$

Limit of a Function: Properties

Use analogies to understand what is new by comparing what you understood.

Properties

If $\lim _{x \rightarrow x_{0}} f(x)=L<a$, then $\exists \delta>0$ such that $\forall x, 0<\left|x-x_{0}\right|<\delta \Longrightarrow f(x)<a$
If $\lim _{x \rightarrow x_{0}} f(x)=L>b$, then $\exists \delta>0$ such that $\forall x, 0<\left|x-x_{0}\right|<\delta \Longrightarrow f(x)>b$

Lemma

If $\lim _{n \rightarrow \infty} x_{n}=c$, then $\forall a>c, \exists N \in \mathbb{N}$ such that $n>N \Longrightarrow x_{n}<a$
If $\lim _{n \rightarrow \infty} x_{n}=c$, then $\forall b<c, \exists N \in \mathbb{N}$ such that $n>N \Longrightarrow x_{n}>b$

Limit of a Function: Properties

Use analogies to understand what is new by comparing what you understood.

Limit Theorem for Functions

$$
\begin{aligned}
& \text { Suppose } \lim _{x \rightarrow x_{0}} f(x)=A \text { and } \lim _{x \rightarrow x_{0}} g(x)=B \text { with } \alpha, \beta \in \mathbb{R} . \\
& \lim _{x \rightarrow x_{0}}(\alpha f(x)+\beta g(x))=\alpha A+\beta B \\
& \lim _{x \rightarrow x_{0}} f(x) g(x)=A B \\
& \lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\frac{A}{B} \text { provided } g(x), B \neq 0 \text { on } x \in\left(x_{0}-\delta, x_{0}+\delta\right)
\end{aligned}
$$

Limit of a Function: Properties

Use analogies to understand what is new by comparing what you understood.

Limit Theorem for Functions

Suppose $\lim _{x \rightarrow x_{0}} f(x)=A$ and $\lim _{x \rightarrow x_{0}} g(x)=B$ with $\alpha, \beta \in \mathbb{R}$.
$\lim _{x \rightarrow x_{0}}(\alpha f(x)+\beta g(x))=\alpha A+\beta B$
$\lim _{x \rightarrow x_{0}} f(x) g(x)=A B$
$\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\frac{A}{B}$ provided $g(x), B \neq 0$ on $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$

Limit Theorem

$$
\begin{array}{ll}
\lim _{n \rightarrow \infty}\left(x_{n} \pm y_{n}\right)=\left(\lim _{n \rightarrow \infty} x_{n}\right) \pm\left(\lim _{n \rightarrow \infty} y_{n}\right) & \lim _{n \rightarrow \infty}\left(\alpha x_{n}\right)=\alpha\left(\lim _{n \rightarrow \infty} x_{n}\right) \\
\lim _{n \rightarrow \infty}\left(x_{n} y_{n}\right)=\left(\lim _{n \rightarrow \infty} x_{n}\right)\left(\lim _{n \rightarrow \infty} y_{n}\right) & \lim _{n \rightarrow \infty}\left(\frac{x_{n}}{y_{n}}\right)=\frac{\lim _{n \rightarrow \infty} x_{n}}{\lim _{n \rightarrow \infty} y_{n}} \text { for } y_{n}, \lim _{n \rightarrow \infty} y_{n} \neq 0
\end{array}
$$

Students who are interested in formal proofs can refer to the appendix A. 5 of the textbook, HWT.

Limit of a Function: Properties

Use analogies to understand what is new by comparing what you understood.
Theorem

The limit of a function is unique.
That is, if $\lim _{x \rightarrow x_{0}} f(x)=A$ and $\lim _{x \rightarrow x_{0}} f(x)=B$, then $A=B$.

> The limit of a convergent sequence is unique.
> That is, if $\lim _{n \rightarrow \infty} x_{n}=c$ and $\lim _{n \rightarrow \infty} x_{n}=d$, then $c=d$.

Limit of a Function: Properties

Use analogies to understand what is new by comparing what you understood.
Theorem

The limit of a function is unique.
That is, if $\lim _{x \rightarrow x_{0}} f(x)=A$ and $\lim _{x \rightarrow x_{0}} f(x)=B$, then $A=B$.

Theorem

The limit of a convergent sequence is unique.
That is, if $\lim _{n \rightarrow \infty} x_{n}=c$ and $\lim _{n \rightarrow \infty} x_{n}=d$, then $c=d$.

Limit of a Function: Properties

Use analogies to understand what is new by comparing what you understood.

Theorem

If $f(x)$ converges as $x \rightarrow x_{0}$, then for any $\epsilon>0$, there exists a $\delta>0$ such that $\forall x_{1}$ and $x_{2}, 0<\left|x_{1}-x_{0}\right|<\delta$ and $0<\left|x_{2}-x_{0}\right|<\delta$ imply $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<\epsilon$.

Cauchy Sequence

Limit of a Function: Properties

Use analogies to understand what is new by comparing what you understood.

Theorem

If $f(x)$ converges as $x \rightarrow x_{0}$, then for any $\epsilon>0$, there exists a $\delta>0$ such that $\forall x_{1}$ and $x_{2}, 0<\left|x_{1}-x_{0}\right|<\delta$ and $0<\left|x_{2}-x_{0}\right|<\delta$ imply $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<\epsilon$.

Cauchy Sequence

x_{n} is convergent $\Longleftrightarrow \exists N \in \mathbb{N}$ s.t. $\left|x_{n}-x_{m}\right|<\epsilon$ for $\forall n, m>N$ with $\forall \epsilon>0$.

Limit of a Function: Properties

Use analogies to understand what is new by comparing what you understood.

Theorem

Suppose $f(x)$ and $g(x)$ converge as $x \rightarrow x_{0}$.
If there exists a $\delta>0$ s.t. $f(x) \leq g(x)$ for all x on $\left(x_{0}-\delta, x_{0}+\delta\right)$, then $\lim _{x \rightarrow x_{0}} f(x) \leq \lim _{x \rightarrow x_{0}} g(x)$.

Theorem
$\lim _{n \rightarrow \infty} x_{n}=x, \lim _{n \rightarrow \infty} y_{n}=y$, and $x_{n} \geq y_{n}$ for $\forall n \in \mathbb{N}$ implies $x \geq y$.

Limit of a Function: Properties

Use analogies to understand what is new by comparing what you understood.

Theorem

$$
\text { Suppose } f(x) \text { and } g(x) \text { converge as } x \rightarrow x_{0} \text {. }
$$

If there exists a $\delta>0$ s.t. $f(x) \leq g(x)$ for all x on $\left(x_{0}-\delta, x_{0}+\delta\right)$, then $\lim _{x \rightarrow x_{0}} f(x) \leq \lim _{x \rightarrow x_{0}} g(x)$.

Theorem

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} x_{n}=x, \lim _{n \rightarrow \infty} y_{n}=y, \text { and } x_{n} \geq y_{n} \text { for } \forall n \in \mathbb{N} \text { implies } x \geq y \\
& a \leq x_{n} \leq b \text { for } \forall n \in \mathbb{N} \text { and } \lim _{n \rightarrow \infty} x_{n}=x \text { implies } a \leq x \leq b
\end{aligned}
$$

Limit of a Function: Properties

Use analogies to understand what is new by comparing what you understood.

Sandwich Rule

If there exists a $\delta>0$ s.t.
$f(x) \leq g(x) \leq h(x)$ for all x on $\left(x_{0}-\delta, x_{0}+\delta\right)$ and $\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}} h(x)=L$, then $\lim _{x \rightarrow x_{0}} g(x)=L$.

- Prove $\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0$ by using the Sandwich Rule.

Limit of a Function: Properties

Use analogies to understand what is new by comparing what you understood.

Sandwich Rule

If there exists a $\delta>0$ s.t.

$$
\begin{aligned}
& f(x) \leq g(x) \leq h(x) \text { for all } x \text { on }\left(x_{0}-\delta, x_{0}+\delta\right) \text { and } \lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}} h(x)=L \\
& \text { then } \lim _{x \rightarrow x_{0}} g(x)=L
\end{aligned}
$$

Sandwich Lemma

$$
\begin{aligned}
& \text { Let } x_{n} \leq y_{n} \leq z_{n} \text { for all } n \in \mathbb{N} . \\
& \lim _{n \rightarrow \infty} x_{n}=c \text { and } \lim _{n \rightarrow \infty} z_{n}=c \text { implies } \lim _{n \rightarrow \infty} y_{n}=c .
\end{aligned}
$$

- Prove $\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0$ by using the Sandwich Rule.

Limit of a Function: Properties

Definition: Divergence and Unboundedness

If $\exists \epsilon>0$ such that $\forall \delta>0$, there exist x_{1} and x_{2} which satisfy that

$$
0<\left|x_{1}-x_{0}\right|<\delta \text { and } 0<\left|x_{2}-x_{0}\right|<\delta \text { imply }\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|>\epsilon,
$$ then $f(x)$ diverges as $x \rightarrow x_{0}$.

$$
\begin{array}{ll}
\lim _{x \rightarrow x_{0}} f(x)=\infty \quad \text { iff } \quad \forall M>0, \exists \delta>0 \text { s.t. } \forall x, 0<\left|x-x_{0}\right|<\delta \Longrightarrow f(x)>M . \\
\lim _{x \rightarrow x_{0}} f(x)=-\infty \quad \text { iff } \quad \forall M<0, \exists \delta>0 \text { s.t. } \forall x, 0<\left|x-x_{0}\right|<\delta \Longrightarrow f(x)<M .
\end{array}
$$

Definition: Unboundedness

Limit of a Function: Properties

Definition: Divergence and Unboundedness

If $\exists \epsilon>0$ such that $\forall \delta>0$, there exist x_{1} and x_{2} which satisfy that
$0<\left|x_{1}-x_{0}\right|<\delta$ and $0<\left|x_{2}-x_{0}\right|<\delta$ imply $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|>\epsilon$, then $f(x)$ diverges as $x \rightarrow x_{0}$.

$$
\begin{array}{ll}
\lim _{x \rightarrow x_{0}} f(x)=\infty & \text { iff }
\end{array} \quad \forall M>0, \exists \delta>0 \text { s.t. } \forall x, 0<\left|x-x_{0}\right|<\delta \Longrightarrow f(x)>M . ~\left[\begin{array}{ll}
\lim _{x \rightarrow x_{0}} f(x)=-\infty & \text { iff } \quad \forall M<0, \exists \delta>0 \text { s.t. } \forall x, 0<\left|x-x_{0}\right|<\delta \Longrightarrow f(x)<M .
\end{array}\right.
$$

Definition: Unboundedness

$$
\lim _{n \rightarrow \infty} x_{n}= \pm \infty \quad \Longleftrightarrow \text { For any real number } \mathrm{M}>0, \exists N \text { s.t. } \forall n>N \Longrightarrow\left|x_{n}\right|>M
$$

Limit of a Function: Properties

Definition: Divergence

If $\exists \epsilon>0$ such that $\forall \delta>0$, there exist x_{1} and x_{2} which satisfy that $0<\left|x_{1}-x_{0}\right|<\delta$ and $0<\left|x_{2}-x_{0}\right|<\delta$ imply $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|>\epsilon$, then $f(x)$ diverges as $x \rightarrow x_{0}$.

- Prove $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$ diverges (hint: take $x_{1}=\frac{1}{2 n \pi+\frac{\pi}{7}}$ and $x_{2}=\frac{1}{2 n \pi-\frac{\pi}{2}}$).

FIGURE 2.31 The function $y=\sin (1 / x)$ has neither a righthand nor a left-hand limit as x approaches zero (Example 4).

Limit of a Function: Properties

Definition

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} f(x)=L \text { iff } \forall \epsilon>0, \exists M>0 \text { s.t. } \forall x>M \Longrightarrow|f(x)-L|<\epsilon \\
& \lim _{x \rightarrow-\infty} f(x)=L \text { iff } \forall \epsilon>0, \exists M<0 \text { s.t. } \forall x<M \Longrightarrow|f(x)-L|<\epsilon
\end{aligned}
$$

Limit of a Function: Properties

Definition: Left-hand Limit

$$
\lim _{x \rightarrow x_{0}^{-}} f(x)=L \text { iff } \forall \epsilon>0, \exists \delta>0 \text { s.t. } \forall x, x_{0}-\delta<x<x_{0} \Longrightarrow|f(x)-L|<\epsilon
$$

Definition: Right-hand Limit

$$
\lim _{x \rightarrow x_{0}^{+}} f(x)=L \text { iff } \forall \epsilon>0, \exists \delta>0 \text { s.t. } \forall x, x_{0}<x<x_{0}+\delta \Longrightarrow|f(x)-L|<\epsilon
$$

- True or False: $\lim _{x \rightarrow 0} \frac{1}{x}=\infty$ and $\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty$?
- Find left-hand and right-hand limits of the sign(signum) function:

$$
\operatorname{sgn}(x)=\left\{\begin{array}{lll}
-1 & \text { if } & x<0 \\
0 & \text { if } & x=0 \\
+1 & \text { if } & x>0
\end{array}\right.
$$

Limit of a Function: Properties

Theorem

$\lim _{x \rightarrow x_{0}} f(x)$ exists if and only if $\lim _{x \rightarrow x_{0}^{-}} f(x)$ and $\lim _{x \rightarrow x_{0}^{+}} f(x)$ both exist and they are equal.

[MCT] Monotone Convergence Theorem for Functions

Suppose $f(x)$ is increasing on $[a, b]$. Then, for $\forall x_{0} \in(a, b)$, both $\lim _{x \rightarrow x_{0}^{-}} f(x) \& \lim _{x \rightarrow x_{0}^{+}} f(x)$ exist and $\lim _{x \rightarrow x_{0}^{-}} f(x) \leq f\left(x_{0}\right) \leq \lim _{x \rightarrow x_{0}^{+}} f(x)$.

Suppose $f(x)$ is decreasing on $[a, b]$. Then, for $\forall x_{0} \in(a, b)$, both $\lim _{x \rightarrow x_{0}^{-}} f(x) \& \lim _{x \rightarrow x_{0}^{+}} f(x)$ exist and $\lim _{x \rightarrow x_{0}^{-}} f(x) \geq f\left(x_{0}\right) \geq \lim _{x \rightarrow x_{0}^{+}} f(x)$.

- Find $\lim _{x \rightarrow 0} f(x)$ when $f(x)=\left\{\begin{array}{lll}-1 & \text { if } & x<0 \\ 0 & \text { if } & x=0 \\ 1 & \text { if } & x>0\end{array}\right.$.

Limit of a Function

Theorem

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1
$$

Lemma

$$
|\sin (x)| \leq|x| \leq|\tan (x)| \text { for }-\frac{\pi}{2}<x<\frac{\pi}{2} .
$$

Proof.

- Compare areas of triangles with the circle sector, $\frac{x}{2 \pi} \pi r^{2}=\frac{1}{2} r l$, with $r=1$ and $l=r x$, and prove the inequalities for $0<x<\frac{\pi}{2}$.
- Then it follows that $0<-x<\frac{\pi}{2}$ implies $\sin (-x)<-x<\tan (-x)$

Limit of a Function

Theorem

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1
$$

Proof.
For $0<x<\frac{\pi}{2}$, the inequalities, $\sin (x)<x<\tan (x)=\frac{\sin (x)}{\cos (x)}$, lead to
$\cos (x)<\frac{\sin (x)}{x}<1$. Therefore, $\lim _{x \rightarrow 0^{+}} \frac{\sin (x)}{x}=1$ by the Sandwich Rule. The left-hand
limit, $\lim _{x \rightarrow 0^{-}} \frac{\sin (x)}{x}=1$ for $-\frac{\pi}{2}<x<0$, follows by substituting $t \equiv-x$.

Limit of a Function

Theorem

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1
$$

Proof.

For $0<x<\frac{\pi}{2}$, the inequalities, $\sin (x)<x<\tan (x)=\frac{\sin (x)}{\cos (x)}$, lead to $\cos (x)<\frac{\sin (x)}{x}<1$. Therefore, $\lim _{x \rightarrow 0^{+}} \frac{\sin (x)}{x}=1$ by the Sandwich Rule. The left-hand limit, $\lim _{x \rightarrow 0^{-}} \frac{\sin (x)}{x}=1$ for $-\frac{\pi}{2}<x<0$, follows by substituting $t \equiv-x$.

Limit of a Function

Corollary

$$
\lim _{x \rightarrow x_{0}} \sin (x)=\sin \left(x_{0}\right) \quad \lim _{x \rightarrow x_{0}} \cos (x)=\cos \left(x_{0}\right)
$$

Proof
Use trigonometric identity:
$\sin (x)-\sin (y)=2 \cos \left(\frac{x+y}{2}\right) \sin \left(\frac{x-y}{2}\right)$

Observe that

$\left.0 \leq\left|\sin (x)-\sin \left(x_{0}\right)\right|=\left|2 \cos \left(\frac{x+x_{0}}{2}\right) \sin \left(\frac{x-x_{0}}{2}\right)\right| \leq 2\left|\cos \left(\frac{x+x_{0}}{2}\right)\right| \right\rvert\, \sin \left(\frac{x-x_{0}}{2}\right)$

$x_{0} \mid$ for all x near x_{0}.
Therefore, $x \rightarrow x_{0}$ implies $\left|\sin (x)-\sin \left(x_{0}\right)\right| \rightarrow 0$. We can prove for $\cos ^{(}(x)$ analogously.

- Prove $\lim _{x \rightarrow x_{0}} \frac{\sin (x)-\sin \left(x_{0}\right)}{x-x_{0}}=\cos \left(x_{0}\right)$ and $\lim _{x \rightarrow x_{0}} \frac{\cos (x)-\cos \left(x_{0}\right)}{x-x_{0}}=-\sin \left(x_{0}\right)$.

Limit of a Function

Corollary

$$
\lim _{x \rightarrow x_{0}} \sin (x)=\sin \left(x_{0}\right) \quad \lim _{x \rightarrow x_{0}} \cos (x)=\cos \left(x_{0}\right)
$$

Proof.

Use trigonometric identity:

$$
\sin (x)-\sin (y)=2 \cos \left(\frac{x+y}{2}\right) \sin \left(\frac{x-y}{2}\right), \quad \cos (x)-\cos (y)=-2 \sin \left(\frac{x+y}{2}\right) \sin \left(\frac{x-y}{2}\right) .
$$

Observe that

$$
\begin{aligned}
0 \leq\left|\sin (x)-\sin \left(x_{0}\right)\right| & =\left|2 \cos \left(\frac{x+x_{0}}{2}\right) \sin \left(\frac{x-x_{0}}{2}\right)\right| \leq 2\left|\cos \left(\frac{x+x_{0}}{2}\right)\right|\left|\sin \left(\frac{x-x_{0}}{2}\right)\right| \\
& \leq 2\left|\sin \left(\frac{x-x_{0}}{2}\right)\right| \leq 2\left|\frac{x-x_{0}}{2}\right|=\left|x-x_{0}\right| \text { for all } x \text { near } x_{0} .
\end{aligned}
$$

Therefore, $x \rightarrow x_{0}$ implies $\left|\sin (x)-\sin \left(x_{0}\right)\right| \rightarrow 0$. We can prove for $\cos (x)$ analogously.
\rightarrow Prove $\lim _{x \rightarrow x_{0}} \frac{\sin (x)-\sin \left(x_{0}\right)}{x-x_{0}}=\cos \left(x_{0}\right)$ and $\lim _{x \rightarrow x_{0}} \frac{\cos (x)-\cos \left(x_{0}\right)}{x-x_{0}}=-\sin \left(x_{0}\right)$.

Limit of a Function

Theorem

For $e \equiv \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}, \quad e=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}$ with $n \in \mathbb{N}$ and $x \in \mathbb{R}$.

Since $x \rightarrow \infty$, restrict x by $x>1$. Then $\lfloor x\rfloor \leq x \leq\lfloor x\rfloor+1$. It follows:

Observe $g(x)=\left(1+\frac{1}{n+1}\right)^{n}$ and $h(x)=\left(1+\frac{1}{n}\right)^{n+1}$ for $x \in[n, n+1)$, where $n \in \mathbb{N}$. Thus,

- Prove $e=\lim _{x \rightarrow-\infty}\left(1+\frac{1}{x}\right)^{x}, e=\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}$, and $\lim _{x \rightarrow x_{0}} \frac{\ln (x)-\ln \left(x_{0}\right)}{x-x_{0}}=\frac{1}{x_{0}}$ (hint: $t \equiv-x, \frac{1}{x}, \frac{x-x_{0}}{x_{0}}$.

Limit of a Function

Theorem

$$
\text { For } e \equiv \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}, \quad e=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x} \text { with } n \in \mathbb{N} \text { and } x \in \mathbb{R} \text {. }
$$

Proof.

Since $x \rightarrow \infty$, restrict x by $x>1$. Then $\lfloor x\rfloor \leq x \leq\lfloor x\rfloor+1$. It follows:

$$
g(x) \equiv\left(1+\frac{1}{\lfloor x\rfloor+1}\right)^{\lfloor x\rfloor} \leq\left(1+\frac{1}{[x\rfloor+1}\right)^{x} \leq\left(1+\frac{1}{x}\right)^{x} \leq\left(1+\frac{1}{\lfloor x\rfloor}\right)^{x} \leq\left(1+\frac{1}{\lfloor x\rfloor}\right)^{\lfloor x\rfloor+1} \equiv h(x) .
$$

Observe $g(x)=\left(1+\frac{1}{n+1}\right)^{n}$ and $h(x)=\left(1+\frac{1}{n}\right)^{n+1}$ for $x \in[n, n+1)$, where $n \in \mathbb{N}$. Thus,

$$
\begin{aligned}
& g(x)=\lim _{x \rightarrow \infty}\left(1+\frac{1}{\lfloor x\rfloor+1}\right)^{\lfloor x\rfloor}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n+1}\right)^{n}=\lim _{n \rightarrow \infty}\left[\frac{\left(1+\frac{1}{n+1}\right)^{n+1}}{1+\frac{1}{n+1}}\right]=e \\
& h(x)=\lim _{x \rightarrow \infty}\left(1+\frac{1}{\lfloor x\rfloor}\right)^{\lfloor x\rfloor+1}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n+1}=\lim _{n \rightarrow \infty}\left[\left(1+\frac{1}{n}\right)^{n}\left(1+\frac{1}{n}\right)\right]=e
\end{aligned}
$$

- Prove $e=\lim _{x \rightarrow-\infty}\left(1+\frac{1}{x}\right)^{x}, e=\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}$, and $\lim _{x \rightarrow x_{0}} \frac{\ln (x)-\ln \left(x_{0}\right)}{x-x_{0}}=\frac{1}{x_{0}}$ (hint: $t \equiv-x, \frac{1}{x}, \frac{x-x_{0}}{x_{0}}$.

Limit of a Function: Exercises

- Evaluate:

$$
\lim _{x \rightarrow-1} \frac{x^{3}+4 x^{2}-3}{x^{2}+5} \quad \lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x^{2}-x} \quad \lim _{x \rightarrow 0} \frac{\sqrt{x^{2}+100}-10}{x^{2}}
$$

- Determine whether the limits exist:

$$
\lim _{x \rightarrow 0} \frac{x}{|x|} \quad \lim _{x \rightarrow 1} \frac{1}{x-1}
$$

- Prove that $\lim _{x \rightarrow 2} f(x)=4$ if $f(x)=\left\{\begin{array}{ll}x^{2}, & x \neq 2 \\ 1, & x=2\end{array}\right.$.
- Find the limits:

$$
\lim _{t \rightarrow 0} \frac{\sin (k t)}{t} \quad \lim _{y \rightarrow 0} \frac{\sin (3 y)}{4 y} \quad \lim _{y \rightarrow 0} \frac{\sin (y)}{\sin (2 y)}
$$

- Let $f(x)=\left\{\begin{array}{ll}3-x, & x<2 \\ \frac{x}{2}+1, & x>2\end{array}\right.$.

Find $\lim _{x \rightarrow 2^{+}} f(x), \lim _{x \rightarrow 2^{-}} f(x), \lim _{x \rightarrow 2^{-}} f(x), \lim _{x \rightarrow 4^{+}} f(x), \lim _{x \rightarrow 4^{-}} f(x)$, and $\lim _{x \rightarrow 4} f(x)$.

Continuity of Functions

[SHS] Chap 7.8 \& 7.9 \& $7.10[H W T]$ Chap 2.5

Continuity of a Function

$$
\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)
$$

- Suppose $f(x)$ is defined on an open interval $\left(x_{0}-\delta, x_{0}+\delta\right)$ for some $\delta \in \mathbb{R}^{+}$.
- A function $f(x)$ is said to be continuous at x_{0} if $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$ holds.
- Otherwise, we say, $f(x)$ is discontinuous at x_{0}.
- Define $\Delta y \equiv f(x)-f\left(x_{0}\right)$ and $\Delta x \equiv x-x_{0}$.
$f(x)$ is continuous at x_{0} if $\Delta x \rightarrow 0$ implies $\Delta y \rightarrow 0$, where $\Delta y=f(x)-f\left(x_{0}\right)=f\left(x_{0}+x-x_{0}\right)-f\left(x_{0}\right)=f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)$.
- The limit can get inside of the argument of a function only when the function is continuous at the designated point. That is, $\lim _{x \rightarrow x_{0}} f(x)=f\left(\lim _{x \rightarrow x_{0}} x\right)=f\left(x_{0}\right)$ holds only when $f(x)$ is continuous at x_{0} (note that x is continuous on \mathbb{R}).

Continuity of a Function

$$
\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)
$$

- [Continuity Test] A function $f(x)$ is continuous at an interior point x_{0} of its domain if and only if
(c) $f\left(x_{0}\right)$ exists.
(2) $\lim _{x \rightarrow x_{0}} f(x)$ exists, that is, $\lim _{x \rightarrow x_{0}^{+}} f(x)=\lim _{x \rightarrow x_{0}^{-}} f(x)$.
(3) $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$.
- A function $f(x)$ is right-continuous (continuous from the right) at x_{0} if and only if $\lim _{x \rightarrow x_{0}^{+}} f(x)=f\left(x_{0}\right)$.
- A function $f(x)$ is left-continuous (continuous from the left) at x_{0} if and only if $\lim _{x \rightarrow x_{0}^{-}} f(x)=f\left(x_{0}\right)$.

Continuity of a Function

$$
\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)
$$

- A function $f(x)$ is said to be continuous on an open interval (a, b) if it is continuous at any $x_{0} \in(a, b)$.
- A function $f(x)$ is continuous on a closed interval $[a, b]$ if it is continuous on (a, b), right continuous at a, and left continuous at b.

Continuity of a Function: Continuity vs. Discontinuity

- [Continuity Test] A function $f(x)$ is continuous at an interior point x_{0} of its domain if and only if
(1) $f\left(x_{0}\right)$ exists.
(2) $\lim _{x \rightarrow x_{0}} f(x)$ exists, that is, $\lim _{x \rightarrow x_{0}^{+}} f(x)=\lim _{x \rightarrow x_{0}^{-}} f(x)$.
(3) $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$.

Continuity of a Function: Properties

$$
\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)
$$

- Suppose functions $f(x)$ and $g(x)$ are continuous on an open interval (a, b).
(1) $\alpha f(x)+\beta g(x)$ is continuous on (a, b) with $\alpha, \beta \in \mathbb{R}$.
(2) $f(x) g(x)$ is continuous on (a, b).
(3) $\frac{f(x)}{g(x)}$ is continuous at any $x_{0} \in(a, b)$ provided $g\left(x_{0}\right) \neq 0$.
(9) $(f(x))^{n}$ and $(f(x))^{\frac{1}{n}}$ are continuous at any $x_{0} \in(a, b)$ with $n \in \mathbb{N}$.
- Suppose a function $y=f(x)$ is continuous at x_{0} and a function $u=g(y)$ is continuous at $y_{0}=f\left(x_{0}\right)$. Then $u=g \circ f(x)$ is continuous at x_{0}.

$$
\lim _{x \rightarrow x_{0}} g(f(x))=g\left(\lim _{x \rightarrow x_{0}} f(x)\right)=g\left(f\left(\lim _{x \rightarrow x_{0}} x\right)\right)=g\left(f\left(x_{0}\right)\right)
$$

- The composition of two continuous functions is continuous.
- Continuity is preserved under algebraic operations:,,$+- \times, \div$ (when denominators are nonzero).

Continuity of a Function: Properties

Theorem

Suppose a function $g(y)$ is continuous at the point c and $\lim _{x \rightarrow x_{0}} f(x)=c$. Then we have $\lim _{x \rightarrow x_{0}} g(f(x))=g(c)=g\left(\lim _{x \rightarrow x_{0}} f(x)\right)$.

Proof.Let $\epsilon>0$ be given. Due to the continuity of $g(y)$ at c, there exists a $\xi>0$ such that Now such ξ is given. Then use the convergence of $f(x)$ towards c as $x \rightarrow x_{0}$ to find some $\delta>0$ such that

Therefore, if we let $y=f(x)$, we have $|g(f(x))-g(c)|<\epsilon$ whenever 0
which completes the nroof.

Continuity of a Function: Properties

Theorem

Suppose a function $g(y)$ is continuous at the point c and $\lim _{x \rightarrow x_{0}} f(x)=c$. Then we have $\lim _{x \rightarrow x_{0}} g(f(x))=g(c)=g\left(\lim _{x \rightarrow x_{0}} f(x)\right)$.

Proof.

Let $\epsilon>0$ be given. Due to the continuity of $g(y)$ at c, there exists a $\xi>0$ such that

$$
\forall y, 0<|y-c|<\xi \Longrightarrow|g(y)-g(c)|<\epsilon .
$$

Now such ξ is given. Then use the convergence of $f(x)$ towards c as $x \rightarrow x_{0}$ to find some $\delta>0$ such that

$$
\forall x, 0<\left|x-x_{0}\right|<\delta \Longrightarrow|f(x)-c|<\xi
$$

Therefore, if we let $y=f(x)$, we have $|g(f(x))-g(c)|<\epsilon$ whenever $0<\left|x-x_{0}\right|<\delta$ for all x, which completes the proof.

Continuity of a Function: Properties

- Any elementary function is continuous in its domain.

Linear functions

$$
f(x)=m x+b
$$

Power functions

$$
f(x)=x^{a}
$$

Polynomials

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

Rational functions

$$
f(x)=\frac{p(x)}{q(x)}=\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{1} m+b_{0}} \text { with } q(x) \neq 0
$$

Algebraic functions Any $f(x)$ from $p(x)$ operated by $+,-, x, \div, \sqrt{ } \cdot$, etc
Cosine/Sine functions $\quad f(x)=\sin (x), \cos (x)$
Exponential functions $\quad f(x)=a^{x}$ from domain $(-\infty, \infty)$ to range $(0, \infty)$
Logarithmic functions $\quad f(x)=\log _{a}(x)$ where the base $a \neq 1$ is positive

- How to prove the continuity of x^{a}, a^{x}, and $\log _{a}(x)$ with $a>0, a \neq 1$?
$-x^{a}, a^{x}$, and $\log _{a}(x)$ are monotone and surjective, and so continuous.

Continuity of a Function: Properties

- Any elementary function is continuous in its domain.

Linear functions

$$
f(x)=m x+b
$$

Power functions

$$
f(x)=x^{a}
$$

Polynomials

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

Rational functions

$$
f(x)=\frac{p(x)}{q(x)}=\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{1} m+b_{0}} \text { with } q(x) \neq 0
$$

Algebraic functions Any $f(x)$ from $p(x)$ operated by $+,-, x, \div, \sqrt{ } \cdot$, etc
Cosine/Sine functions $f(x)=\sin (x), \cos (x)$
Exponential functions $\quad f(x)=a^{x}$ from domain $(-\infty, \infty)$ to range $(0, \infty)$
Logarithmic functions $f(x)=\log _{a}(x)$ where the base $a \neq 1$ is positive

- How to prove the continuity of x^{a}, a^{x}, and $\log _{a}(x)$ with $a>0, a \neq 1$?
- x^{a}, a^{x}, and $\log _{a}(x)$ are monotone and surjective, and so continuous.

Continuity of a Function: Injection and Surjection

- A function $f: X \rightarrow Y$ is one-to-one (injective) if

$$
x_{1} \neq x_{2} \text { implies } f\left(x_{1}\right) \neq f\left(x_{2}\right) \quad \forall x_{1}, x_{2} \in X
$$

where the contrapositive is given by

$$
f\left(x_{1}\right)=f\left(x_{2}\right) \Longrightarrow x_{1}=x_{2} \quad \forall x_{1}, x_{2} \in X
$$

f is not one-to-one:

$$
f\left(x_{1}\right)=f\left(x_{2}\right)
$$

$$
f \text { is one-to-one: }
$$

An injective non-surjective function (injection, not a bijection)

An injective surjective function (bijection)

A non-injective surjective function
A non-injective non-surjective (surjection, not a bijection)

Continuity of a Function: Injection and Surjection

- A function f from a set X to a set Y is a surjection (an onto function) if $\forall y \in Y, \exists x \in X$ such that $f(x)=y$.
- The function below is not surjective (not an onto function) since the mapping (colored yellow) does not fill the whole codomain.

Continuity of a Function: Injection and Surjection

- Is an injective function monotone?
- If a function $f:[a, b]$ is monotone, then is $f:[a, b] \rightarrow[\min (f(a), f(b)), \max (f(a), f(b))]$ surjective?
- If a function $f:[a, b]$ is monotone, then is $f:[a, b] \rightarrow[\min (f(a), f(b)), \max (f(a), f(b))]$ continuous?
- If a function $f:[a, b]$ is continuous and injective, then is f monotone?

Continuity of a Function: Injection and Surjection

- Is an injective function monotone?

No, see graph A.

- If a function $f:[a, b]$ is monotone, then is $f:[a, b] \rightarrow[\min (f(a), f(b)), \max (f(a), f(b))]$ surjective?
No, see graph B.
- If a function $f:[a, b]$ is monotone, then is
$f:[a, b] \rightarrow[\min (f(a), f(b)), \max (f(a), f(b))]$ continuous?
No, see graph B.
- If a function $f:[a, b]$ is continuous and injective, then is f monotone? Yes, it is strictly monotone!

Graph A

Graph B

Continuity of a Function: Injection and Surjection

Theorem

If a function $f(x):[a, b] \rightarrow[\min (f(a), f(b)), \max (f(a), f(b))]$ is a monotonic surjection, then $f(x)$ is continuous on (a, b).

Continuity of a Function: Injection and Surjection

Theorem

If a function $f(x):[a, b] \rightarrow[\min (f(a), f(b)), \max (f(a), f(b))]$ is a monotonic surjection, then $f(x)$ is continuous on (a, b).

Proof.

Suppose $f(x)$ is increasing and not continuous at some $x_{0} \in(a, b)$. By MCT, the left-hand and right-hand limits exist as $x \rightarrow x_{0}$ and there are three cases for discontinuity at x_{0} :
(1) $\lim _{x \rightarrow x_{0}^{-}} f(x)<f\left(x_{0}\right)=\lim _{x \rightarrow x_{0}^{+}} f(x)$ or
(2) $\lim _{x \rightarrow x_{0}^{-}} f(x)=f\left(x_{0}\right)<\lim _{x \rightarrow x_{0}^{+}} f(x)$ or
(3) $\lim _{x \rightarrow x_{0}^{-}} f(x)<f\left(x_{0}\right)<\lim _{x \rightarrow x_{0}^{+}} f(x)$. In cases of (1) or (3), there exists some
$y^{\prime} \in\left(\lim _{x \rightarrow x_{0}^{-}} f(x), f\left(x_{0}\right)\right)$ such that there is no $x^{\prime} \in(a, b)$ which obtains $y^{\prime}=f\left(x^{\prime}\right)$. Similarly, in cases of (2) or (3), there exists some $y^{\prime} \in\left(f\left(x_{0}\right), \lim _{x \rightarrow x_{0}^{+}} f(x)\right)$ such that there is no $x^{\prime} \in(a, b)$ which assigns $f\left(x^{\prime}\right)$ to y^{\prime}. Both contradict with the definition of surjection. Hence, $f(x)$ is continuous at $x_{0} \in(a, b)$. We can analogously prove for $f(x)$ which decreases.

Continuity of a Function: IVT

[IVT] Intermediate Value Theorem

Consider a closed interval $[a, b]$ in \mathbb{R} and a continuous function $f:[a, b] \rightarrow \mathbb{R}$.
$\forall y_{0} \in[\min (f(a), f(b)), \max (f(a), f(b))], \exists c \in[a, b]$ such that $f(c)=y_{0}$.

- Prove $f(x)=x^{4}-5 x^{3}+3 x^{2}-8 x-1=0$ has at least two different roots.

Continuity of a Function: Inverse Functions
 - [Question]

If a function f is continuous and invertible, then f^{-1} is also continuous?

Let $f: X \rightarrow Y$.
The function f is invertible if $\exists!g: Y \rightarrow X$ such that $f(x)=y \Leftrightarrow g(y)=x$. The f inverse, g, is unique and it is denoted by $f^{-1}: Y \rightarrow X$. The f inverse satisfies f^{-1} of $(x)=x$ and $f \circ f^{-1}(y)=y$.

A function f is invertible if and only if it is bijective, i.e., both one-to-one (injective) and onto (surjective).

- Why does a function f need to be surjective for the existence of its inverse?
- If f inverse is to be a function, any element in its domain should get mapped.
= Non-bijective (either non-injective or non-surjective) functions are not invertible.
- There exists a function which is bijective and discontinuous.

Continuity of a Function: Inverse Functions
 - [Question]

If a function f is continuous and invertible, then f^{-1} is also continuous?

Definition

Let $f: X \rightarrow Y$.
The function f is invertible if $\exists!g: Y \rightarrow X$ such that $f(x)=y \Leftrightarrow g(y)=x$.
The f inverse, g, is unique and it is denoted by $f^{-1}: Y \rightarrow X$.
The f inverse satisfies $f^{-1} \circ f(x)=x$ and $f \circ f^{-1}(y)=y$.

- A function f is invertible if and only if it is bijective, i.e., both one-to-one (injective) and onto (surjective).
- Why does a function f need to be surjective for the existence of its inverse?
- If f inverse is to be a function, any element in its domain should get mapped.
- Non-bijective (either non-injective or non-surjective) functions are not invertible.
- There exists a function which is bijective and discontinuous.
e.g. $f(x)=x$ if $x \notin\{0,1\}, f(x)=1$ if $x=0$, and $f(x)=0$ if $x=1$.

Continuity of a Function: Inverse Functions

Theorem

Suppose a function f is continuous on a closed interval $[a, b]$, where $a<b$. The f inverse, f^{-1}, exists if and only if f is strictly monotone.

Continuity of a Function: Inverse Functions

Theorem

Suppose a function f is continuous on a closed interval $[a, b]$, where $a<b$.
The f inverse, f^{-1}, exists if and only if f is strictly monotone.

Proof.

[\Leftarrow] A continuous and strictly monotone f is invertible since it is bijective.
$[\Rightarrow] \exists f^{-1}$ implies $x_{1} \neq x_{2} \Longrightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right) \forall x_{1}, x_{2} \in[a, b]$, and $\therefore f(a) \neq f(b)$, i.e. $f(a) \lessgtr f(b)$.
(1) Suppose f with $f(a)<f(b)$ is not strictly increasing. Then $\exists x_{1}, x_{2} \in(a, b)$ such that $x_{1}<x_{2}$ $\Longrightarrow f\left(x_{1}\right) \geq f\left(x_{2}\right)$.
(1-a) Suppose $f\left(x_{2}\right) \leq f\left(x_{1}\right)<f(b)$. This implies $\exists c \in\left[x_{2}, b\right]$ s.t. $f\left(x_{1}\right)=f(c)$ by IVT where $x_{1}<x_{2} \leq c$, which is a contradiction to the regularity for the inverse function: $x_{1} \neq c \Longrightarrow$ $f\left(x_{1}\right) \neq f(c)$.
(1-b) Suppose $f(a)<f(b) \leq f\left(x_{1}\right)$. This implies $\exists c^{\prime} \in\left[a, x_{1}\right]$ s.t. $f(b)=f\left(c^{\prime}\right)$ by IVT where $c^{\prime} \leq x_{1}<b$, which is a contradiction to the regularity for the inverse function.
(2) Now suppose f with $f(a)>f(b)$ is not strictly decreasing. We can show the contradiction by analogous steps.

Continuity of a Function: Inverse Functions

- [Question]

If a function f is continuous and invertible, then f^{-1} is also continuous?

- What is the answer?
- If f is continuous and invertible, then f is strictly monotone and so is f^{-1}
- Since f^{-1} is strictly monotone and bijective, f^{-1} is also continuous.

```
If a continuous \(f\) is strictly monotone, then \(\exists f^{-1}\) and so is \(f^{-1}\) since it is bijective.
```

Theorem
If a function $f(x):[a, b] \rightarrow[\min (f(a), f(b)), \max (f(a), f(b))]$ is a monotonic surjection,
then $f(x)$ is continuous on (a, b).

Continuity of a Function: Inverse Functions

- [Question]

If a function f is continuous and invertible, then f^{-1} is also continuous?

- What is the answer?
- If f is continuous and invertible, then f is strictly monotone and so is f^{-1}.
- Since f^{-1} is strictly monotone and bijective, f^{-1} is also continuous.

Corollary

If a continuous f is strictly monotone, then $\exists f^{-1}$ and so is f^{-1} since it is bijective.
\square
Theorem
If a function $f(x):[a, b] \rightarrow[\min (f(a), f(b)), \max (f(a), f(b))]$ is a monotonic surjection, then $f(x)$ is continuous on (a, b).

Continuity of a Function: Inverse Functions

- [Question]

If a function f is continuous and invertible, then f^{-1} is also continuous?

- What is the answer?
- If f is continuous and invertible, then f is strictly monotone and so is f^{-1}.
- Since f^{-1} is strictly monotone and bijective, f^{-1} is also continuous.

Corollary

If a continuous f is strictly monotone, then $\exists f^{-1}$ and so is f^{-1} since it is bijective.

Theorem

If a function $f(x):[a, b] \rightarrow[\min (f(a), f(b)), \max (f(a), f(b))]$ is a monotonic surjection, then $f(x)$ is continuous on (a, b).

Continuity of a Function: Exercises

- For what values of a and b is $g(x)$ continuous at every x ?

$$
g(x)=\left\{\begin{array}{lr}
a x+2 b, & x \leq 0 \\
x^{2}+3 a-b, & 0<x \leq 2 \\
3 x-5, & x>2
\end{array}\right.
$$

- Prove the following functions are continuous everywhere on their respective domains.

$$
y=\sqrt{x^{3}-2 x^{2}-5 x} \quad y=\left|\frac{x-2}{x^{2}-4}\right| \quad y=\left|\frac{x \sin (x)}{x^{2}+2}\right|
$$

- Show there is a root of the equation $x^{3}-x-1=0$ between 1 and 2 .
- Use the Intermediate Value Theorem to prove that the equation $\sqrt{2 x+5}=4-x^{2}$ has a solution.

Appendix

Limit of a Function: Functions and Sequences

Theorem

If $\lim _{x \rightarrow x_{0}} f(x)=L$, then, for any sequence x_{n} with $\lim _{n \rightarrow \infty} x_{n}=x_{0}$ and $x_{n} \neq x_{0} \forall n, \lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$.
 Taking this δ as given, we can find an N such that $\forall n>N$ implies $\left|x_{n}-x_{0}\right|<\delta$. Therefore, $\exists N$ such that $\forall n>$

Theorem

Given a sequence x_{n}, define $f(x)=x_{n}$ if $x \in[n, n+1)$, then, $\lim _{n \rightarrow \infty} x_{n}=L$ if and only if $\lim _{x \rightarrow \infty} f(x)=L$.

Limit of a Function: Functions and Sequences

Theorem

If $\lim _{x \rightarrow x_{0}} f(x)=L$, then, for any sequence x_{n} with $\lim _{n \rightarrow \infty} x_{n}=x_{0}$ and $x_{n} \neq x_{0} \forall n, \lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$.

Proof.

For any $\epsilon>0$, there exists a $\delta>0$ such that $\forall x, 0<\left|x-x_{0}\right|<\delta$ implies $|f(x)-L|<\epsilon$. Taking this δ as given, we can find an N such that $\forall n>N$ implies $\left|x_{n}-x_{0}\right|<\delta$. Therefore, $\exists N$ such that $\forall n>N \Longrightarrow\left|x_{n}-x_{0}\right|<\delta \Longrightarrow\left|f\left(x_{n}\right)-L\right|<\epsilon$.

Theorem

Given a sequence x_{n}, define $f(x)=x_{n}$ if $x \in[n, n+1)$, then, $\lim _{n \rightarrow \infty} x_{n}=L$ if and only if $\lim _{x \rightarrow \infty} f(x)=L$.

Logic

- A conditional statement, $P \Longrightarrow Q$: All humans are mammals.
- If something is a human, it is a mammal.
- Negation, $\neg(P \Longrightarrow Q)$.
- There exists a human that is not a mammal.
- Inversion (the inverse), $\neg P \Longrightarrow \neg Q$.
- If something is not a human, it is not a mammal.
- Conversion (the converse), $Q \Longrightarrow P$.
- If something is a mammal, it is a human.
- Contraposition, $\neg Q \Longrightarrow \neg P$.
- If something is not a mammal, it is not a human.

Function

- A function f from a set X to a set Y is a rule that assigns a unique element $f(x) \in Y$ to each element $x \in X$.
- The set X of all possible input values is called the domain of the function.
- The set Y of all values of $f(x)$ as x varies throughout X is called the range of the function.

Linear functions

$$
f(x)=m x+b
$$

Power functions
$f(x)=x^{a}$
Polynomials
$p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$
Rational functions
$f(x)=\frac{p(x)}{q(x)}=\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}}{b_{m} x^{n}+b_{m-1} x^{m-1}+\cdots+b_{1} m+b_{0}}$ with $q(x) \neq 0$
Algebraic functions
Any $f(x)$ from $p(x)$ operated by $+,-, x, \div \sqrt{ } \cdot$, etc
Trigonometric functions
$f(x)=\sin (x), \cos (x), \tan (x)=\frac{\sin (x)}{\cos (x)}, \csc (x), \sec (x), \cot (x)$
Exponential functions $\quad f(x)=a^{x}$ from domain $(-\infty, \infty)$ to range $(0, \infty)$
Logarithmic functions
$f(x)=\log _{a}(x)$ where the base $a \neq 1$ is positive
Transcendental functions exp, log, (inverse) trigonometric functions, and so on

Function

- Functions can be added, subtracted, multiplied, and divided (except where the denominator is zero) to produce new functions.
- If f and g are functions, then for every $x \in X(f) \cap X(g)$ that belongs to the domains of both f and g,

$$
\begin{array}{ll}
(f \pm g)(x) & =f(x) \pm g(x) \\
(f g)(x) & =f(x) g(x) \\
\left(\frac{f}{g}\right)(x) & =\frac{f(x)}{g(x)} \text { at which } g(x) \neq 0 \\
(c f)(x) & =c f(x) \text { where } x \in X(f)
\end{array}
$$

- If f and g are functions, the composite function $f \circ g$ is defined by

$$
(f \circ g)(x)=f(g(x))
$$

where the domain of $f \circ g$ consists of the numbers x in the domain of g for which $g(x)$ lies in the domain of f.

Function

- A function $y=f(x)$ is an even function of x if $f(x)=f(-x)$ for every x in the function's domain.
- A function $y=f(x)$ is an odd function of x if $f(x)=-f(-x)$ for every x in the function's domain.
- A function $f(x)$ is one-to-one on a domain X if $x_{1} \neq x_{2}$ in X implies $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.
- A one-to-one function intersects each horizontal line at most once.
- For a one-to-one function $f(x): X \rightarrow Y$, the inverse function $f^{-1}: Y \rightarrow X$ is defined by

$$
f^{-1}(b)=a \text { if } f(a)=b
$$

Function

- An absolute value function is given by $f(x)=|x|$.
- A floor function is $f(x)=\lfloor x\rfloor$.
- A ceiling function is $f(x)=\lceil x\rceil$.
- The Dirichlet function is $I_{Q}(x)=1$ for $x \in \mathbb{Q}$ and $I_{Q}(x)=0$ for $x \in \mathbb{R} \backslash \mathbb{Q}$, which is nowhere continuous (everywhere discontinuous).

Function

- Does a function whose domain is the empty set exist?
- In set theory terminology, a function $f: X \rightarrow Y$ is a subset of $X \times Y$ such that,
(1) For all $x \in X$, there exists a $y \in Y$, such that $(x, y) \in f$.
(2) If $(x, y) \in f$ and $(x, z) \in f$, then $y=z$.
- If X is the empty set, then $X \times Y$ is the empty set. X has no elements and so (1) is true.
- When $X \times Y$ is empty, Any relation from X to Y will have no elements and so (2) is also true.
- Therefore, any relation from the empty set to any other set is a function.

Trigonometric Identities

$$
\begin{array}{ll}
\tan (x)=\frac{\sin (x)}{\cos (x)}, \quad \sec (x)=\frac{1}{\cos (x)}, \quad \csc (x)=\frac{1}{\sin (x)}, & \cot (x)=\frac{1}{\tan (x)} \\
\cos (x)=\sin \left(x+\frac{\pi}{2}\right) & \cot (x)=-\tan \left(x+\frac{\pi}{2}\right) \quad \csc (x)=\sec \left(x-\frac{\pi}{2}\right) \\
\sin (-x)=-\sin (x) \quad \cos (-x)=\cos (x) & \tan (-x)=-\tan (x) \\
\sin ^{2}(x)+\cos ^{2}(x)=1 \quad \sin (2 x)=2 \sin (x) \cos (x) \quad \cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x) \\
\tan (2 x)=\frac{2 \tan (x)}{1-\tan ^{2}(x)} \quad \tan (x+y)=\frac{\tan (x)+\tan (y)}{1-\tan (x) \tan (y)} \quad \tan (x-y)=\frac{\tan (x)-\tan (y)}{1+\tan (x) \tan (y)} \\
\begin{array}{l}
\sin (x) \cos (y)=\frac{\sin (x+y)+\sin (x-y)}{2} \\
\cos (x) \cos (y)=\frac{\cos (x+y)+\cos (x-y)}{2} \\
\sin (x) \sin (y)=-\frac{\cos (x+y)-\cos (x-y)}{2} \\
\sin (x)+\sin (y)= \\
\sin (x)-\sin (y)=2 \sin \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right) \\
\cos (x)+\cos (y)=2 \cos \left(\frac{x+y}{2}\right) \sin \left(\frac{x-y}{2}\right) \\
\cos (x)-\cos (y)=2 \cos \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)
\end{array}
\end{array}
$$

Motivation: Equity vs. Debt in Corporate Finance

[Question] What is the importance of financial shocks - perturbations that originate directly in the financial sector?

- Observe the net payments to equity holders and the net debt repurchases in the nonfinancial business sector (corporate and noncorporate).
- The figure and table documents the cyclical properties of firms' equity and debt flows at an aggregate level. We then build a business cycle model with explicit roles for firms' debt and equity financing that is capable of capturing the empirical cyclical properties of the financial flows.
- Debt is preferred to equity, but the firms' ability to borrow is limited by an enforcement constraint which is subject to random disturbances - financial shocks affecting the firms' ability to borrow.
- Financing comes from three sources: internal funds, debt, and new equities. Companies prioritize their sources of financing, first preferring internal financing, and then debt, lastly raising equity as a "last resort".
- The pecking order theory is popularized by Myers and Majluf (1984) where they argue that equity is a less preferred means to raise capital because when managers (who are assumed to know better about true condition of the firm than investors) issue new equity, investors believe that managers think that the firm is overvalued and managers are taking advantage of this over-valuation. As a result, investors will place a lower value to the new equity issuance.

Motivation: Equity vs. Debt in Corporate Finance

[Question] What is the importance of financial shocks - perturbations that originate directly in the financial sector?

- Equity payout is procyclical and debt payout is countercyclical.
- Financial shocks contributed significantly to the observed dynamics of real and financial variables.
- Equity payout is defined as dividends and share repurchases minus equity issues of nonfinancial corporate businesses, minus net proprietor's investment in noncorporate businesses. This captures the net payments to business owners (shareholders of corporations and noncorporate business owners).
- Debt is defined as "Credit Market Instruments," which include only liabilities that are directly related to credit markets transactions. Debt repurchases are simply the reduction in outstanding debt (or increase if negative). Both variables are expressed as a fraction of business GDP.
- First, equity payouts are negatively correlated with debt repurchases. This suggests that there is some substitutability between equity and debt financing.
- Second, while equity payouts tend to increase in booms, debt repurchases increase during or around recessions. This suggests that recessions lead firms to restructure their financial positions by cutting the growth rate of debt and reducing the payments to shareholders.

Motivation: Measure an Economy

- GDP (Y) is the market value of total production within a nation's border.
- Consumer spending (C) is household spending on goods and services.
- Investment spending (I) is spending on productive physical capital (such as machinery and construction of buildings) and on changes to inventories (total investment equals fixed investment plus the change in inventories).
- Government purchases of goods and services (G) are total expenditures on goods and services by federal, state, and local governments: education, national defense, Social Security, etc.
- Goods and services sold to other countries are exports (EX).
- Goods and services purchased from other countries are imports (IM).

References

- Thomas Sargent, Computational Challenges in Macroeconomics, "https://youtu.be/VM7UtaR5wHw"
- Eckstein, Zvi, and Kenneth I. Wolpin. "Dynamic labour force participation of married women and endogenous work experience." The Review of Economic Studies 56.3 (1989): 375-390.
- Jermann, Urban, and Vincenzo Quadrini. "Macroeconomic effects of financial shocks." American Economic Review 102.1 (2012): 238-71.
- Myers, Stewart C., and Nicholas S. Majluf. "Corporate financing and investment decisions when firms have information that investors do not have." Journal of financial economics 13.2 (1984): 187-221.
- Krugman, Paul, and Robin Wells. "Macroeconomics." 5th edition, macmillan education.

